letric function can now be expressed as:

$$l + 2, 2rn^{-1} = \sum_{\nu=0}^{\infty} n^{-\nu} \Phi_{l,\nu}(r),$$
 (29)

$$+1)! \sum_{k=\nu}^{\infty} \frac{(-1)^k a_{\nu}^{k,l} (2r)^k}{k! (2l+1+k)!}.$$
 (30)

be transformed to sums of Bessel funcs $a_{\nu}^{k,l}$ are written in a convenient form. It t functions $\Phi_{l,\nu}$ are, when the abbreviation

$$(2l+1)! (\frac{1}{2}z)^{-2l-1} J_{2l+1}(z),$$
 (31)

$$\frac{1}{2}(2l+1)! (\frac{1}{2}z)^{-2l+1} J_{2l+1}(z),$$
 (32)

$$-2l-1 (8l^3 + 12l^2 + 4l) + (\frac{1}{2}z)^{-2l+1}(2l+2) + (\frac{1}{2}z)^{-2l} (4l^2 + 4l) - 2(\frac{1}{2}z)^{-2l+2} \} J_{2l}(z).$$
(33)

ons, $a_y^{k,l}/k!$ should be written down as a sum of z, the form

$$\frac{\binom{2l+1}{2}!}{\binom{2l}{2}!} + \frac{\binom{1}{2}l + \binom{5}{6}}{(k-3)!} + \frac{\binom{1}{8}}{(k-4)!}$$
(34)

currence formulae for the Bessel func-

electronic levels, studied is this note, are the

$$(z),$$
 (35)

(36)

$$+ \frac{1}{8}(\frac{1}{2}z)^3 J_1(z) - \frac{1}{12}(\frac{1}{2}z)^2 J_0(z),$$
 (37)

$$J_3(z),$$
 (38)

$$J_3(z), (39)$$

$$+3/4(1/2z)$$
 $J_3(z) + \{-2(1/2z)^{-2}-1/2\} J_2(z)$. (40)

the (E, r_0) -curve in the neighbourhood of sary to consider the nodes r_0 of F or, by way in number of terms of the development (29)

$$e^{-1} \Phi_{l,1} + n^{-2} \Phi_{l,2} = 0, \tag{41}$$

$$= r_{00} + r_{01} + r_{02}, \tag{42}$$

nd r_{01} and r_{02} of first and second order in n^{-1} , he function Φ in Taylor series and equa-

ON THE ENERGIES OF A MODEL OF THE COMPRESSED H-ATOM 679

$$\Phi_{l,0}(r_{00}) = 0$$
 or $J_{l+1}(2\sqrt{2r_{00}}) = 0$ gives r_{00} , (43)

$$r_{01} = 0,$$
 (44)

$$\Phi'_{l,0}(r_{00}) r_{02} + n^{-2} \Phi_{l,2}(r_{00}) = 0$$
 gives r_{02} . (45)

It follows by using some relations between Besse'l functions and their derivatives, that for s-levels (l=0):

$$r_{02} = \frac{1}{6}n^{-2} r_{00}^2, \tag{46}$$

so that, in total:

$$r_0 = r_{00} + \frac{1}{6}n^{-2}r_{00}^2 = r_{00} - \frac{1}{3}Er_{00}^2;$$
 (47)

this being the equation of the tangent in E=0 at the (E,r_0) curve for a s-level, with r_{00} following from the nodes of the Bessel function J_1 . The first node gives the tangent of the 1s-level:

$$r_0 = 1.835 - 1.123 E,$$
 (48)

whereas the second node gives the tangent of the 2s-level:

$$r_0 = 6.153 - 12.620 E.$$
 (49)

For the p-levels (l = 1) it is found after a simple calculus that

$$r_{02} = n^{-2} \left(\frac{1}{8} r_{00} + \frac{1}{8} r_{00}^2 \right), \tag{50}$$

and so for the tangent

$$r_0 = r_{00} + n^{-2} \left(\frac{1}{3} r_{00} + \frac{1}{6} r_{00}^2 \right),$$
 (51)

$$r_0 = r_{00} - E(\frac{2}{3}r_{00} + \frac{1}{3}r_{00}^2),$$
 (52)

with r_{00} from $J_3(2\sqrt{2r_{00}}) = 0$.

For the 2p-level we need the first node of J_3 , so that the tangent is

$$r_0 = 5.086 - 12.015 E.$$
 (53)

The tangents (49) and (53) are indicated in figure 2.

d) E > 0. In the region of positive energies *), the confluent hypergeometric function (6) has imaginary parameters n and ρ (v.(2)). No tables for this region being available for l = 0 and l = 1, zero points have been calculated by using for the confluent hypergeometric function the series expansion of Buchholz 4). The results are given in tables II-IV and plotted in figure 3.

e) $E \to \infty$. For the asymptotic case of small radii r_0 and thus large positive energies in the problem of the encaged hydrogen atom the influence of the proton on the electron can be neglected in

^{*)} The curve of reference 2 is only roughly sketched in that region and numerically not reliable.